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Appetitive/aversive stimuli: such stimuli are differentiated based on the

hedonic state that they create. Appetitive stimuli satisfy basic needs (e.g.,

food, sex, etc.) and thus create a pleasurable hedonic state. They generally

reinforce behavior that leads to these hedonic states and are often associated

with approach behavior. Aversive stimuli generate unpleasant hedonic states

and tend to extinguish behavior or result in avoidance of the stimuli [74].

Whether a stimulus is appetitive or aversive can depend on the physiological

state that the person or animal is in. For example, healthy rats consider

hypertonic sodium solutions to be aversive, but in a state of sodium depletion,

the solution becomes appetitive [75,76].

Common neural currency hypothesis: the hypothesis states that the brain

converts all types of reward into a common scale, allowing for comparisons

of value across disparate stimuli [14].

Gain/loss: an increase/decrease in a stimulus from a reference amount. For

humans, gains and losses are typically referenced in the context of monetary

decision making. What is considered a gain or loss depends on the reference

point, which could range from a person’s total wealth to the amount of money

with which they are endowed at the beginning of an experiment. Thus, the

framing of potential choices may have a large effect on choice behavior.

Neuroeconomics: the interdisciplinary science of decision making that com-

bines economics, neuroscience, and psychology. The majority of neuroeco-

nomic studies use fMRI to measure the brain’s activity while people make

decisions. These decisions are often over monetary outcomes, as money is

easily manipulated and measurable and thus ideal for testing economic models

of decision making.

Reinforcement learning: a type of learning that requires interaction with the

environment (as opposed to supervised learning). An agent using reinforce-

ment learning algorithms will try to optimize behavior based on reward- or
There is mounting evidence that the mesolimbic dopa-
mine system carries valuation signals not only for appe-
titive or gain-related stimuli, with which it is traditionally
associated, but also for aversive and loss-related stimuli.
Cellular-level studies demonstrate that the neuronal
architecture to support aversive stimuli encoding in this
system does exist. Both cellular-level and human neu-
roimaging research suggest the co-existence of appeti-
tive and aversive prediction-error signals within the
mesocorticolimbic system. These findings shift the view
of the mesocorticolimbic system as a singular pathway
for reward to a system with multiple signals across a
wide range of domains that drive value-based decision
making.

Neural underpinnings of value-based decision making
Revealing the biological basis of human decision making
has been the goal of much neuroscience research in the
past few decades. Specifically, value-based decision mak-
ing research has grown exponentially from the early 2000s
to present, due, in part, to the growth of the field of
neuroeconomics (see Glossary). In value-based decision
making, in order to make a choice between several differ-
ent actions or objects, the individual assigns a value to each
alternative and subsequently chooses the option with the
highest value. This process can be described through eco-
nomic models of decision making, such as expected utility
theory [1], whereas tools from neuroscience and psychology
have helped pinpoint where variables in these models are
represented in the human brain [2,3].

One conclusion that has been drawn from value-based
decision research is that brain regions within the meso-
corticolimbic dopamine system play a crucial role in repre-
senting value, changes in value, and other variables
related to the decision process. The primary neuroanatom-
ical structures in the mesocorticolimbic system are the
ventral tegmental area (VTA), the ventral striatum (VS),
and regions of the prefrontal cortex, including the ventro-
medial prefrontal cortex (vmPFC). These regions were first
identified as being important for reward-related learning
on the basis of brain stimulation experiments in the 1950s
[4], electrophysiological studies [5], and more recently
human neuroimaging [6–8]. The majority of these studies
have used either appetitive stimuli or monetary gains for
human decision making tasks. In comparison, much less is
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known about whether the mesocorticolimbic system also
processes decision variables across gains and losses in
humans, and appetitive and aversive stimuli in other
animals. Human neuroimaging studies find support both
for [9–11] and against [6,12,13] the idea of a single neuro-
anatomical system that represents value across these
domains (also known as a ‘common neural currency’
[14]), with most of the disparity arising from decisions
over financial losses. In studies that do find both appetitive
and aversive representation of value in mesocorticolimbic
structures, it is unclear whether this value is represented
by an appetitive signal, an aversive signal, or both.

Animal studies show that the neural architecture to
support aversive coding in the mesocorticolimbic system
does exist. Separate populations of neurons that are stim-
ulated and inhibited by aversive stimuli exist within the
VTA [15]. These populations could underlie the separate
appetitive and aversive prediction-error signals found in
both the ventral striatum and orbitofrontal cortex by neu-
roimaging studies [16]. A close underlying neuroanatomi-
cal relationship between pleasure and pain has been
punishment-related feedback from the environment.

Value: a metric used to compare potential outcomes for which an individual

makes decisions. Value can be objective (e.g., calculated mathematically as

expected value) or subjective (‘utility’).
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Box 1. Differential behavior over gains and losses

People behave differently when making choices between financial

gains versus choices between financial losses. When faced with

decisions over gains, people tend to behave in a risk-averse manner.

When faced with decisions over losses, people tend to behave in a

risk-seeking manner. This is known as the ‘reflection effect’ and is

described in prospect theory by Kahneman and Tversky [51]. People

also behave as if losses were twice as bad as gains are good – this

behavior is known as ‘loss aversion’ [77]. This difference in behavior

over gains and losses suggests that they are treated as separate

domains, potentially with separate underlying neural pathways.

Prospect theory demonstrates this non-uniform treatment of

gains and losses behaviorally and thus begs the question of where

this is reflected in the brain. It has already been demonstrated that

financial gains elicit increases in activation in mesocorticolimbic

structures, but what about financial losses? Tom et al. [33]

demonstrated an increase in BOLD response to potential financial

gains and a decrease in response to potential financial losses, a

result that is consistent with an appetitive PE. Furthermore, the

heavier weighting of losses was reflected by a steeper response to

losses in the ventral striatum than gains. Although other studies of

loss aversion have implicated alternative brain regions, namely the

amygdala [78,79], recent animal and human studies suggest that

even disparate domains of decision making recruit the ventral

striatum, OFC, and other mesocorticolimbic structures

[16,34,46,64,65].
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suggested before [17,18]. Behavior over these separate
domains differs substantially, and this suggests the exis-
tence of separate, perhaps parallel, neuroanatomical sub-
strates (Box 1). Here, we review evidence for the role of the
mesocorticolimbic system in representing value across all
domains, with an eye toward its respective role in decision
making over losses and aversive outcomes. Ultimately, we
aim to shift the view of the mesocorticolimbic system as a
singular reward-related hub to a system that contains
multiple signals across disparate domains that drive val-
ue-based decision making.

The mesolimbic dopamine system and prediction error
The mesocorticolimbic system has long been known to be
involved in reward [4,19,20], but the application of rein-
forcement learning theories helped shed light on what
dopamine might be signaling. Current evidence points
to dopaminergic neurons as signaling prediction errors
(PEs). In its simplest form, a reward PE is a learning
signal that represents the difference between the reward
that is expected and the reward that is actually received
[21,22]. Reward PE is positive when rewards are greater
than expected, zero when expectations are met, and nega-
tive when they are worse than expected. Phasic fluctua-
tions in dopamine correlate with reward PE signaling as it
pertains to learning and reinforcement [23,24]. Unpre-
dicted rewards increase phasic firing rates of dopaminer-
gic neurons in the VTA, whereas fully-predicted rewards
do not [25,26]. In naı̈ve monkeys, before they have learned
a reward association, midbrain dopamine neurons in-
crease their firing rate to a reward that follows an uncon-
ditioned cue. Once the monkeys are trained, the same
midbrain dopamine neurons respond to the conditioned
cue, but not the reward [5]. This is consistent with reward
PEs not just signaling differences between expectation
and received reward, but differences between expectation
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and conditioned reward cues. Also consistent with reward
PEs, human neuroimaging studies find increases in blood
flow to the ventral striatum for both unpredicted rewards
and unpredicted information that predicts future rewards,
but not for rewards that are fully predicted [27–30]. The
magnitude of these reward PE-like responses in mesolim-
bic regions have been observed to scale with the size of the
PE [31].

Theoretically, a single PE signal could be positive for
appetitive outcomes and negative for aversive outcomes.
However, even within this framework, there are two pos-
sible interpretations of PE signals. For example, a positive
PE could result from a stimulus that is more appetitive
than expected or a stimulus that is less aversive than
expected. The context of the decision dictates the repre-
sentation. To disambiguate these possibilities, the brain
would need to maintain separate appetitive and aversive
PE signals even within the mesocorticolimbic system (Box
2). This would serve to motivate separate sets of behavior,
such as approach and avoidance [32]. Evidence for both a
unitary [33] and separate PE [16,34] signals for appetitive
and aversive stimuli exist in the literature. We discuss this
literature below.

Neuronal architecture for aversive coding
At the cellular level, it is clear that both appetitive- and
aversive-responsive neuronal populations exist within the
VTA, one of the primary regions of dopamine synthesis in
the human brain. Mirenowicz and Schultz [25] electro-
physiologically sampled dopamine neurons in the ventral
tegmental area and substantia nigra in monkeys, and
found that 76%–78% of the neurons responded to appeti-
tive stimuli, whereas between 3% and 14% responded to
aversive stimuli. More recent rodent research found a
range of appetitive-responding neurons in the VTA, rang-
ing from 0% to 67% of the sampled neurons [35–37]. A
portion of the appetitive-responding neurons are also
inhibited by aversive stimuli [15,38]. Some evidence sug-
gests that these neurons are arranged in a dorsal-ventral
gradient in the VTA, where more ventral VTA neurons are
excited by aversive stimuli, and more dorsal neurons by
appetitive stimuli [39]. Emerging literature suggests that
not all appetitive- or aversive-responding neurons in the
VTA are dopaminergic. GABAergic neurons in the VTA
have been shown to represent expectation [40] and might
constitute a portion of aversive-responding neurons [41].
Several laboratories have identified putative inputs into
the VTA that drive these aversive- and appetitive-signal-
ing neuronal populations, which include the lateral habe-
nula and the rostromedial tegmental nucleus [42–45].
Ultimately, electrophysiological research suggests that
there are at least two separate PE signals at the level of
the VTA.

The nucleus accumbens (NAcc) is the main target of
efferent VTA neurons. Dopamine release within the NAcc
mirrors what has been found electrophysiologically – that
there are at least two distinct appetitive and aversive
signals. Similar to the findings of electrophysiological
studies, cyclic voltammetry has been used to demonstrate
a differential dopaminergic response to aversive stimuli.
Cyclic voltammetry is an electrochemical method that



Box 2. Appetitive and aversive prediction error

There is evidence at both the cellular- and systems-level that at least

two separate learning signals are carried in the mesocorticolimbic

system. The most commonly referred to signal, the appetitive PE

signal, is also referred to as reward prediction error (RPE). The

appetitive PE signal is larger when outcomes or information about

future outcomes is better than expected. It does not differentiate

between the receipt of a reward or a less aversive stimulus. An aversive

PE is a mirror image of an appetitive PE: it is larger when outcomes or

information about future outcomes is worse than expected. This is

illustrated well by Seymour et al. [16], where the researchers

manipulated the level of pain a participant was experiencing by either

increasing or decreasing the temperature of a patch of skin that had

capsaicin topically applied. The participants were presented with cues

which predicted the temperature change (either relief or pain). The

researchers modeled both appetitive and aversive PEs, looking for

regions whose BOLD response fit the time course of these signals

(Figure I). They found that these signals were co-expressed in the

ventral striatum, insula, and rostral anterior cingulate cortex.
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Figure I. Appetitive and aversive PEs. Adapted, with permission, from Seymour et al. [16].

Review Trends in Cognitive Sciences June 2013, Vol. 17, No. 6
allows in vivo detection of neurotransmitter release with
sub-second resolution. Both increases [46] and decreases
[47,48] in dopamine transmission have been demonstrat-
ed in the NAcc to aversive stimuli. Data from Budygin
et al. [46] suggest that these phasic changes in dopamine
release have a specific time course of onset and offset.
Onset of an aversive stimulus elicits an increase in
dopamine release in the NAcc core, whereas the offset
of an aversive stimulus results in an increase in dopa-
mine in the NAcc shell. There is also evidence for
a spatial separation between appetitive and aversive
stimuli in the NAcc, similar to the dorsal–ventral sepa-
ration suggested for the VTA. In rats, Badrinarayan
et al. [49] used fast scan cyclic voltammetry to measure
dopamine fluctuations in the NAcc core and shell. The
rats were trained using Pavlovian fear conditioning to
associate an auditory cue with an aversive stimulus (a
foot shock). After conditioning, the cue elicited a decrease
in dopamine transmission in the NAcc core, but an
increase in the NAcc shell. These results suggest that
both an appetitive PE (core) and aversive PE (shell)
coexist in the NAcc. Combined with electrophysiological
evidence, it is clear there is an architecture for both
types of stimuli to be processed within the mesocortico-
limbic system, but as separate signals.
Human mesolimbic dopamine system and monetary
losses
In humans, it is less clear whether monetary losses are
represented in the mesolimbic dopamine system. Some
neuroimaging studies show either no response to monetary
loss in the NAcc or find activations in other regions, such as
the amygdala and insula [6,12,13]. However, there are also
studies that show responses in the NAcc and other meso-
limbic structures to monetary losses [9–11]. A meta-anal-
ysis of 142 neuroimaging studies revealed that the NAcc
was commonly activated for both gains and losses, with the
anterior insula, ACC, and lateral PFC preferentially acti-
vated for losses [50]. Using a classic economic decision task,
Tom et al. [33] asked participants to accept or reject a 50/50
gamble of a financial gain/loss. By varying the amounts of
the gains/losses, the researchers were able to identify brain
regions that correlated with the gains and losses separate-
ly during the decision process. The blood-oxygen-level-
dependent (BOLD) response in the NAcc correlated posi-
tively with the size of the potential gains and negatively
with the size of the potential losses. The slope of the
correlation also reflected the behavioral finding that par-
ticipants weighed losses twice as much as gains [51].

These results fit with a single appetitive PE signal,
which increases for potential gains, but decreases for
283
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Figure 1. Meta-analysis of appetitive and aversive signals in the human brain. A

meta-analysis of 206 neuroimaging publications revealed both independent and

overlapping regions that encode an appetitive and aversive signals (termed

‘positive’ and ‘negative’ responses, respectively). (A) Regions showing both

appetitive and aversive signals. (B) Regions with larger clustering for appetitive

signals than aversive signals. (C) Map illustrating the overlap between panel (A)

and (B). Adapted, with permission, from Bartra et al. [66].
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Figure 2. Proposed division of major mesocorticolimbic structures along appetitive–

aversive lines. Neuroimaging studies have demonstrated a medial–lateral gradient

for appetitive–aversive processing, respectively [62]. Cyclic voltammetry has also

revealed a differential response in the NAcc core vs shell for appetitive–aversive

stimuli [49]. Similarly, some electrophysiological studies have demonstrated a

dorsal–ventral gradient for appetitive–aversive stimuli in the VTA [39]. Although the

anatomical connectivity between these regions and their respective gradients are not

entirely clear, the evidence suggests that there is a separate pathway within the

mesocorticolimbic system for appetitive and aversive signals.
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potential losses. However, this finding is not consistent
across the neuroimaging literature. This lack of consensus
may be related to the difficulty in studying loss in an
experimental setting. Inducing a true financial loss is
prohibited by most rules of human experimentation,
and studies that have used truly aversive stimuli (such
as electric shocks) are relatively few. Other factors related
to participant incentives could also affect human neuro-
imaging results [52]. For example, a simple endowment of
money from which participants win or lose might not be
sufficient to elicit true feelings of loss. Activity in the NAcc
has been demonstrated to be reference-dependent
[31,53,54], whereas the dorsal striatum and orbitofrontal
cortex have been shown in some studies to track reference-
independent value [55,56]. Thus, incentives and potential
outcomes must be carefully structured so that partici-
pants’ reference points allow the stimuli to be judged as
losses.

According to the common neural currency hypothesis,
monetary losses are represented in the same brain
regions as aversive stimuli. Direct comparisons of deci-
sions over aversive stimuli and monetary loss reveal
similar responses in mesocorticolimbic structures.
Brooks et al. [57] replaced monetary outcomes with elec-
tric shocks in the same paradigm used by Tom et al. [33]
and found that the expected value of entirely aversive
gambles was encoded in the ventral striatum. Increased
striatal activity was associated with ‘less bad’ gambles,
consistent with a reward PE signal. Similarly, Delgado
et al. [52] had participants complete a classical condition-
ing task, where unconditioned stimuli (either electric
shocks or monetary losses) were paired with cues while
undergoing functional MRI (fMRI) and skin conductance
response (SCR) measurements. A conjunction analysis
revealed that ventral striatum activity increased for both
cues that predicted electric shocks and cues that pre-
dicted monetary losses. Furthermore, the SCRs to both
shock- and monetary loss-conditioned cues were not dis-
tinguishable from each other. The results of Brooks et al.
[57] were consistent with a reward PE signaling better
than expected outcomes, similar to that found by Tom
et al. [33] with monetary losses. Delgado et al. [52] found
an aversive PE in the ventral striatum, similar to that
found in other studies for noxious stimuli [58–61]. At the
spatial scale measured with fMRI, information about
monetary losses appears to be carried by the same un-
derlying substrates as aversive stimuli.

Both cellular-level and neuroimaging research suggest
the co-existence of appetitive and aversive PE signals
within the mesocorticolimbic system. O’Doherty et al.
[62] demonstrated a medial–lateral gradient for proces-
sing the value of monetary gains and losses in the orbito-
frontal cotex (OFC), respectively. A similar gradient was
found with appetitive and aversive smells by Gottfried
et al. [63]. Other studies also show that the OFC encodes
the value of both appetitive and aversive options [64,65].
In one study, Seymour et al. [16] applied capsaicin (a
compound found in various capsicums that gives hot pep-
pers their hotness) topically on the left leg of participants
as they underwent fMRI. Cues were presented that were
50% predictive of either a painful or relieving outcome.
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The intensity and relief of the pain associated with the
capsaicin was manipulated by either increasing or de-
creasing the temperature of an overlaid thermode. The
authors found that both appetitive and aversive PEs were
represented in separate brain regions, namely, the lateral



Box 3. Outstanding Questions

� What is the role of incentive structure in the conflicting

neuroimaging results on financial loss?

� What is the relative contribution of appetitive and aversive signals

to the BOLD response in mesolimbic structures?

� To what degree is a financial loss processed as an aversive signal?

� How do these appetitive–aversive signals interact to produce

differential behavior in the face of reward or punishment?
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OFC for aversive PE, and substantia nigra and amygdala
for appetitive PE. However, a conjunction analysis
revealed that these signals coexisted in the NAcc. Bartra
et al. [66] analyzed 206 neuroimaging publications that
involved fMRI and reward; they also found both indepen-
dent and overlapping areas with appetitive and aversive
signals in the striatum (Figure 1). The OFC is both struc-
turally and functionally connected to the striatum; it is
likely that the medial–lateral gradient evident in the OFC
is related to dual appetitive–aversive signals found in the
striatum and to the dorsal–ventral distinction in the VTA
(Figure 2) [66–70]. Furthermore, these signals might arise
from separate aversive- and appetitive-responding neuro-
nal populations in the VTA. Information about aversive
stimuli and financial losses are thus propagated through
the mesolimbic dopamine system, just as an abundance of
literature has demonstrated for appetitive signals.

Concluding remarks
There is strong evidence that the mesocorticolimbic dopa-
mine system is a hub of valuation across appetitive and
aversive stimuli, and monetary gains and losses. This
neuroanatomical network, with dopamine as its primary
neurotransmitter, is not limited to a single appetitive
valuation signal that increases to better-than-expected
outcomes and decreases to worse-than-expected outcomes.
Neuroimaging studies have found that both appetitive and
aversive signals exist within the OFC and NAcc.
Electrophysiological research confirms that the VTA con-
tains separate populations of neurons that respond to
appetitive vs aversive stimuli. Cyclic voltammetry demon-
strates a differential response in the NAcc core and shell to
aversive stimuli. In this review, we have focused solely on
the mesolimbic dopamine system, but there is evidence
that valuation signals exist in other regions, such as the
insula, amygdala, and areas of the parietal cortex [71–73].
Future research might help elucidate how these separate
appetitive and aversive valuation signals interact to pro-
duce approach–avoidance behavior (Box 3).
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