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The majority of decision-related research has focused on how the brain computes decisions over 
outcomes that are positive in expectation. However, much less is known about how the brain 
integrates information when all possible outcomes in a decision are negative. To study decision-
making over negative outcomes, we used fMRI along with a task in which participants had to 
accept or reject 50/50 lotteries that could result in more or fewer electric shocks compared to 
a reference amount. We hypothesized that behaviorally, participants would treat fewer shocks 
from the reference amount as a gain, and more shocks from the reference amount as a loss. 
Furthermore, we hypothesized that this would be reflected by a greater BOLD response to the 
prospect of fewer shocks in regions typically associated with gain, including the ventral striatum 
and orbitofrontal cortex. The behavioral data suggest that participants in our study viewed all 
outcomes as losses, despite our attempt to induce a status quo. We find that the ventral striatum 
showed an increase in BOLD response to better potential gambles (i.e., fewer expected shocks). 
This lends evidence to the idea that the ventral striatum is not solely responsible for reward 
processing but that it might also signal the relative value of an expected outcome or action, 
regardless of whether the outcome is entirely appetitive or aversive. We also find a greater 
response to worse gambles in regions previously associated with aversive valuation, suggesting 
an opposing but simultaneous valuation signal to that conveyed by the striatum.
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There is some evidence that the striatum and other orbitostriatal 
structures are involved in both gain and loss processing (Delgado 
et al., 2003; Seymour et al., 2007; Tom et al., 2007). However, most 
of these studies pitted a potential gain against a loss, used a medium 
that is generally rewarding (money), or focused solely on the antici-
pation of the gain or loss, and thus it is not clear that when all out-
comes are negative, whether the striatal system would still be engaged 
or whether a separate system would perform the decision-making 
processing. Some research suggests that anticipation and experience 
of aversive stimuli activate the striatum (LaBar et al., 1998; Becerra 
et al., 2001; Jensen et al., 2003; Seymour et al., 2004). Indeed, there 
are populations of dopaminergic neurons that respond to aversive 
stimuli (Coizet et al., 2006; Matsumoto and Hikosaka, 2009). Thus, 
we hypothesized that the striatal system also processes the value of 
non-rewarding stimuli during the decision-making process itself, 
as opposed to solely the anticipation of the stimuli. For painful out-
comes (electric shocks), we predicted that fewer electric shocks from 
a reference amount would be viewed as a “gain” and more electric 
shocks as a “loss.” Furthermore, we predicted that the ventral striatum 
would be involved in processing “gains” (fewer electric shocks) even 
though the overall outcome medium was always unpleasant.

To test these hypotheses, we used fMRI along with a gambling 
task involving electric shocks. In a manner similar to that in the task 
used by Tom et al. (2007), participants were asked to accept or reject 

IntroductIon
Many real world decisions involve the possibility of both good 
and bad outcomes, but sometimes the choices are between bad 
and worse. Consider, for example, an individual who purchases 
a cell phone plan only to realize that the reception with that 
carrier is terrible. The individual is then faced with the deci-
sion to either stay with the carrier and suffer bad reception, or 
pay an exorbitant cancellation fee. In either case, the outcome 
is bad. The recent advent of neuroeconomics has brought new 
methods of analysis to the study of human decision-making, but 
the vast majority of these studies have focused on decisions in 
which all possible outcomes are non-negative (Knutson et al., 
2001; McClure et al., 2004; Padoa-Schioppa and Assad, 2006; 
Preuschoff et al., 2006; Tobler et al., 2007). But because relatively 
few studies have examined decisions made entirely in the domain 
of losses, it is not clear how the brain gages relative value when all 
of the outcomes are bad. One hypothesis regarding valuation in 
the brain suggests that the utility of positive outcomes is evalu-
ated by a separate neural system from that of negative outcomes. 
In its simplest form, the dual-systems hypothesis associates the 
ventral striatum and the orbitofrontal cortex (OFC) exclusively 
to the evaluation of gains (Mirenowicz and Schultz, 1996), and 
the amygdala and insula exclusively to the evaluation of losses 
(Yacubian et al., 2006).
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Following the calibration phase of the experiment, participants 
entered the scanner to begin the experimental phase, which was 
modeled after a monetary gambling paradigm used by Tom et 
al. (2007). Each trial began with a status quo (10 shocks), which 
was indicated by the presentation of a circle with the text “Sure 
Thing” centered in the middle (see Figure 1). After 2 s, this circle 
turned yellow, indicating the impending onset of the shocks, which 
occurred after a further 2 s. Following an interstimulus interval 
(ISI) of 3 s, a 50/50 gamble appeared with the words “Accept” and 
“Reject” below it. This gamble consisted of two possible outcomes, 
indicated by separate, equally sized slices of the circle, where the 
left side was always more potential shocks and the right side always 
fewer potential shocks. The number of shocks more and less than 
the reference amount varied between trials, such that every possible 
combination of shocks was presented.

Two seconds after presentation of the gamble, participants were 
allowed to “Accept” or “Reject” the gamble by using a button box 
in the scanner. If participants accepted the gamble, a pink ball 
flipped between options for a varying amount of time between 3 
and 6 s, landing with a 50/50 chance on the more shocks or fewer 
shocks outcome. The side on which the ball landed turned yel-
low, indicating the outcome of the gamble and impending shocks, 
which occurred 4.7 s after the outcome was revealed. If participants 
rejected the gamble, an identical presentation including the ball-flip 
and outcome selection occurred. However, in this case the refer-
ence shocks were the only possible outcome. After the shocks were 
administered, the outcome remained on screen for 3 s, and was 
followed by an inter-trial interval (ITI) of 3 s. The experimental 
phase consisted of three runs with 18 trials per run (54 trials in 
total). Trials were randomly ordered for each run within-subjects, 
but remained the same between-subjects. COGENT 2000 (FIL, 
University College London) was used for stimulus presentation 
and response acquisition for this phase.

To confirm that participants could distinguish between the dif-
ferent numbers of shocks and that increasing shocks were increas-
ingly averse, participants rated all possible sets of shocks relative to 
the reference shocks (after the above procedure but while still in 
the scanner). A visual analog scale (VAS) was presented on screen, 
with a white arrow in the center labeled as “reference shocks.” 
Participants were given the reference shocks, and then were given 
another set of shocks, blinded to the number. They were asked to 
rate “How much better or worse it is from your reference,” by mov-
ing the arrow on screen either left (“better”) or right (“worse”). 
All possible sets of shocks were given three times each for a total 
of 30 data points.

fMrI MeasureMents
Functional imaging was performed with a Siemens 3 T Trio whole-
body scanner. T1-weighted images (TR = 2300 ms, TE = 3.04 ms, 
flip angle = 8,192 × 146 matrix, 176 sagittal slices, 1 mm cubic 
voxel size) were acquired for each subject prior to the three experi-
mental runs. For each experimental run, T2*-weighted images 
using an echo-planar imaging sequence were acquired, which 
show blood oxygen level-dependent (BOLD) responses (echo-
planar imaging, TR = 2350 ms, TE = 30 ms, flip angle = 90, 
FOV = 192 mm × 192 mm, 64 × 64 matrix, 35 3-mm thick axial 
slices, and 3 mm3 voxels).

a 50/50 gamble of “more” or “fewer” electric shocks compared to a 
reference amount that they received at the beginning of each trial. If 
participants rejected the gamble, they received the reference amount 
of shocks. If they accepted the gamble, they either received “more” 
or “fewer” shocks from the reference amount. Using this task, we 
tested whether participants’ choice behavior was consistent with 
an adaptation of their status quo to the reference level of shocks. 
Our analysis of the neuroimaging data focused on the period in 
which participants decided whether to accept or reject these lot-
teries. This allowed us to identify regions involved specifically in 
 decision-making as opposed to the anticipation of the outcomes.

MaterIals and Methods
PartIcIPants
Thirty-six participants (18 female, 18 male; 18–45 years) were 
recruited from the Emory University campus. All participants 
were right-handed, reported no psychiatric or neurological disor-
ders, or other characteristics that might preclude them from safely 
undergoing fMRI, and provided informed consent to experimental 
procedures approved by the Emory University Institutional Review 
Board. Participants received a base pay of $40.

exPerIMental Procedures
A Biopac STM100C stimulator module with a STMISOC isolation 
unit (Biopac Systems, Inc., CA, USA) was used to deliver electric 
shocks cutaneously to the dorsum of the left foot through shielded, 
gold electrodes placed 2–4 cm apart. The STMISOC unit controlled 
current output to the electrodes, with each pulse lasting 15 ms. The 
stimulator module was connected via a serial-interface to a laptop 
which controlled the timing and delivery of the shocks.

Prior to scanning, shock intensity was calibrated by finding each 
participant’s “maximum shock intensity”, I

max
. Participants were told 

that their maximum shock intensity would be set to the highest inten-
sity that they could bear. For the calibration procedure, each trial 
consisted of 18 shocks over 340 ms (the maximum number per trial 
in the subsequent experiment). The current was slowly increased 
until participants notified the experimenter that they couldn’t bear it 
anymore, and this current level was set as their I

max
. The current level 

for all shocks throughout the experiment was set at 90% of I
max

.
To gain familiarity with the different numbers of shock out-

comes, participants were passively exposed to all possible outcomes. 
An attempt to induce a status quo of 10 shocks was made by sub-
jecting participants to the 10 shocks at the beginning of each trial. 
On each outcome, the number of shocks (SN) was evenly spaced 
in time over 340 ms, yielding an inter-pulse interval of 340/(SN-1). 
This was done to avoid confounding the number of shocks with 
the total duration of shocks. The number of shocks, SN, within a 
trial was 2, 3, 4, 5, 6, 8, 10, 12, 15, or 18. These numbers were deter-
mined based on previous literature that suggests that the Weber 
fraction for many stimuli range from 0.01 to 0.10, meaning that a 
difference of at least 1–10% between stimuli is needed in order to 
be distinguishable from each other (Teghtsoonian, 1971; Lavoie 
and Grondin, 2004). To insure that participants could distinguish 
between different numbers of shocks, a difference in number of at 
least 25% between shocks was used. The status quo was set at 10 
shocks, and so a relative gain was framed as “2, 4, 5, 6, 7, or 8 less” 
and a relative loss as “2, 5, or 8 more.”
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assumed shocks are “bad” and have negative value; for example, 
the reference shocks would have an expected value (EV) of −10. 
We calculated the expected value of the gambles with the equa-
tion: EV

gamble
 = −10 + (number of shocks less – number of shocks 

more)/2. EV
gamble

 ranged from −7 for the best gamble, and −13 
for the worst gamble. This parameter was expected to directly 
affect choice, because a less negative EV

gamble
 would indicate 

a better gamble and a more negative EV
gamble

 a worse gamble, 
assuming individuals find electric shocks unpleasant. To fur-
ther analyze the interaction between potential outcomes with 
less or more shocks within identified regions, we performed 
an ROI analysis using beta estimates from a different first-level 
model in which the number of shocks less and the number 
of shocks more than the reference amount were modeled by 
separate parametric modulators. This allowed us to identify the 
extent to which better and worse potential outcomes separately 
contributed to EV

gamble
.

Finally, another first-level model was constructed in order to 
extract BOLD responses for each individual gamble type during 
the decision period. Instead of a single lottery period modulated 
by the number of shocks less and number of shocks more than the 
reference amount, this model included each lottery period asso-
ciated with a different gamble as a separate regressor, such that 
there were 18 columns in the design matrix for the decision period, 
along with the remaining regressors that appeared in the primary 
first-level model described above. This allowed the average BOLD 
activity during the decision period for each separate gamble to be 

fMrI analysIs
fMRI data were analyzed using SPM5 (Wellcome Department of 
Imaging Neuroscience, University College London) using a stand-
ard 2-stage random-effects regression model. Data were subjected 
to standard preprocessing, including motion correction, slice 
timing correction, normalization to an MNI template brain and 
smoothing using an isotropic Gaussian kernel (full-width half-
maximum = 8 mm).

Four main regressors were included in the first-level models. 
(1) The status quo shock at the beginning of each trial was modeled 
as an impulse function. (2) The “decision” period, during which 
a decision to accept or reject the gamble was required, was mod-
eled from the onset of gamble presentation until button press. The 
expected value of the gamble was also included as a parametric 
modulator for this period. (3) The “ball” period, in which the gam-
ble outcome was resolved over a varying period of time between 
3 and 6 s, was modeled as a variable duration function. (4) The 
“wait” period was modeled from the display of the gamble outcome 
to the receipt of the shocks. For this period, the number of shocks 
received was included as a parametric modulator. Subject motion 
parameters were also included as regressors. All regressors were 
convolved to the standard HRF function.

Because we were interested in investigating the neural basis of 
decision parameters that affect choice, the second-level analysis 
focused on the decision period (#2 above). To identify regions 
involved in valuation during choice, we first identified regions 
showing correlations with the expected value of the gamble. We 
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FIguRe 1 | Schematic and timing of experimental task. Participants were 
given a status quo number of shocks (10 shocks) indicated by a circle with the 
text “Sure Thing”, followed by the presentation of a 50/50 gamble of more/ less 
electric shocks from a reference amount. After 2 s of presentation of the 
gamble, participants could accept or reject the gamble. If they accepted the 
gamble, a pink ball flipped between outcomes for a period varying between 3 

and 6 s, and landed with a 50/50 probability on either outcome, which turned 
yellow upon selection. If they rejected the gamble, the same presentation 
appeared. However the outcome that appeared in that case was always the 
reference quantity of shocks. After 4.7 s (two scanner repetition times), the 
outcome shocks were administered followed by a further 3 s of the outcome 
display. The ITI remained constant throughout the experiment at 3 s.
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extracted. These values were then used to create “heat maps” of 
activation which give snapshots of how a particular region responds 
to all possible gambles.

results
BehavIoral
For monetary payments, if an individual prefers to receive a certain 
payment rather than a gamble with the same expected value, he 
is said to be risk averse. If he instead prefers the gamble, he is said 
to be risk seeking. Prior research with monetary payments shows 
that on average, individuals are risk-averse (risk-seeking) for posi-
tive (negative) payoffs. We consider whether the shock quantities 
in our experiment are treated in the same way. To consider the 
issue, participant behavior in symmetric lotteries was analyzed. 
Symmetric lotteries were lotteries with the same amount of shocks 
less and more than the reference amount, and therefore had the 
same expected value as the reference shocks. Averaged across all 
runs for all participants, the symmetric lotteries were chosen over 
the reference shocks 74% of the time, which suggests risk-seeking 
behavior. For the individual symmetric lotteries of 8/8, 5/5, and 
2/2, participants chose the lottery 56%, 78%, and 89% of the time, 
respectively. Interestingly, this was significantly different between 
the three symmetric lottery types (F(2,105) = 10.21; p < 0.0001).

As another indicator of overall risk-preference, the average indif-
ference point across participants was determined by graphing the 
probability of choosing the lottery as a function of the expected 
value of the gambles. A sigmoidal curve, shown in Figure 2, was 
fit to the data using a logistic function to determine the average 
indifference point. If participants on average were risk neutral, their 
indifference point would equal the expected value of the reference 
shocks (−10). If participants were risk-seeking, their indifference 
point would be less than −10. The average indifference point was 
−10.94 shocks (f(−10.94) = 0.500 ± 0.218), indicating risk-seeking 
behavior. The reference point of −10 did not lie within the 95% 
confidence interval of the logistic fit (f(−10) = 0.720 ± 0.214), and 
therefore it is likely that this observed indifference point was sig-
nificantly different from risk-neutrality.

To determine individual risk-preference, the curvature of the 
utility function, u(x) = xα was estimated for each participant using 
a non-linear least-squares regression. Participant values were not 
normally distributed nor were they lognormal, and therefore non-
parametric statistics were used to test for significance. A Wilcoxon 
signed-rank test indicated that, on average, participant α values 
(median α = 0.934, SD = 0.309) were significantly different from 
one (p = 0.0381). Due to the method of estimation (where a larger 
expected value is a more unfavorable gamble), an α < 1 indicates 
convexity over losses and therefore a preference for risk-seeking 
behavior, whereas an α = 1 indicates a risk-neutral preference. In 
addition, average VAS ratings for each possible outcome in the study 
were computed and normalized to the reference shock ratings. When 
plotted, these ratings revealed a convex function resembling a value 
function over losses (see Figure 3). The slope of the VAS rating over 
more and less potential shocks were computed for each participant, 
using linear regression. A paired-samples t-test revealed that the 
slope for less potential shocks (M = 1.974, SD = 0.644) was signifi-
cantly greater than the slope for more potential shocks (M = 0.920, 
SD = 0.548), p < 0.001, consistent with a convex value function.
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FIguRe 2 | Risk-seeking behavior. To analyze risk attitude, a sigmoid curve 
was fit to the lottery choice data using a logistic function. An indifference point 
at the status quo characterizes risk-neutral behavior. Participants’ actual 
estimated indifference point was at a lower expected value than the status 
quo, indicated by the red correspondence, which demonstrates risk-seeking 
behavior, typical in the realm of losses (Kahneman and Tversky, 1979). The 
reference point of 10 shocks (−10) did not lie within the 95% confidence 
interval of the logistic fit (f(−10) = 0.720 ± 0.214), suggesting that this 
observed indifference point was significantly different from risk-neutrality.
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FIguRe 3 | Average normalized VAS ratings as a function of the number 
of shocks received. A second-order polynomial function was fitted to the data 
in order to demonstrate the convexity of the observed ratings (R2 = 0.995). 
The reference shocks (10 shocks) are indicated by the lines at the origin. A 
paired-samples t-test revealed that the slope for less electric shocks 
(M = 1.974, SD = 0.644) was significantly greater than the slope for more 
electric shocks (M = 0.920, SD = 0.548), p < 0.001, consistent with a convex 
value function.

fMrI
The expected value of the gambles, EV

gamble
, was used to identify 

brain regions involved in the valuation of gambles during the deci-
sion period (see Figure 4). Used as a parametric modulator, this 
allowed for identification of regions of the brain whose BOLD 
signal correlated with the objective gamble value. Positive correla-
tions between EV

gamble
 and BOLD activity were found in the visual 

cortex, intraparietal sulcus, frontal eye fields, and the left ventral 
striatum, among other areas (see upper portion of Table 1). A less 
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In other words, more potential shocks elicited above-baseline 
BOLD activity in these regions. Similar activity was observed in 
the genual ACC (see Figure 5), with less deactivation for gambles 
with a lower EV

gamble
.

dIscussIon
Contrary to the simplest form of the dual-systems view, which 
would predict no response from the ventral striatum to gambles 
consisting solely of losses, our results indicate that the ventral stria-
tum encodes information regarding value irrespective of the type of 
outcome (e.g., “more” or “less” shocks) and whether the outcomes 
are globally “good” or “bad” (e.g., appetitive or aversive). In par-
ticular, the positive correlation of left ventral striatal activity with 
the expected value of the shock lotteries supports its role in valu-
ation and extends this to include the relative valuations of “bads.” 
While previous neuroimaging studies have demonstrated the role 
of the striatum in integrating the value of rewards with a variety 
of costs (Tom et al., 2007; Croxson et al., 2009; Talmi et al., 2009), 
our results extend these findings to the domains of pain and loss 
even when there is no possibility of gain.

That these decisions were viewed as occurring in the loss domain 
is reinforced by the fact that, despite being exposed to the reference 
shocks for each trial, participants viewed every outcome as a “loss.” 
This was evidenced by consistent risk-seeking behavior over the 
full range of lotteries and a larger slope for less shocks than more 
shocks relative to the status quo for the VAS ratings. These results 
are consistent with past research showing risk-seeking behavior 
over hypothetically painful outcomes (Eraker and Sox, 1981). 
Interestingly, this risk-seeking behavior cannot explain the changes 
in striatal activation as others have suggested (Fiorillo et al., 2003; 
Preuschoff et al., 2006) because the variance of the best and worst 
lotteries is the same in our task. One possible reason for this lack 
of status quo inducement is the transient nature of the reference 
shocks. Although participants were presented with reference shocks 
between each trial, the majority of the time participants were not 
experiencing painful stimuli. It is possible that a constant painful 
stimulus, such as would arise with the use of capsaicin to induce a 
constant state of pain which can then be attenuated or exacerbated 
with temperature, might be more effective in inducing a status quo 
(Seymour et al., 2005).

It is important to distinguish between the loss of something 
desirable, which has been investigated in a considerable number 
of prior studies, and the receipt of something undesirable, which 
has received less attention. Previous neuroeconomic studies of loss 
aversion have shown that the ventral striatum deactivates to the 
prospect of monetary loss (Tom et al., 2007). Similarly, striatal 
deactivation has been observed with increased effort and pain to 
obtain a monetary gain (Croxson et al., 2009; Talmi et al., 2009). 
These results point to the integrative role of the striatum in deter-
mining net value for monetary rewards but do not directly address 
its role in the relative valuation of things that are universally bad. 
Evidence exists, however, that the striatum dynamically scales for 
relative coding of value (Seymour and McClure, 2008). In a similar 
manner, dopamine neurons have been observed to adaptively code 
reward value (Tobler et al., 2005), so it is plausible that the stria-
tum could exhibit adaptive signaling even in the realm of painful 
outcomes – for which we find strong evidence here.

Positive Negative

FIguRe 4 | Lottery × eVgamble response. Regions whose BOLD activity 
responded in an increasing manner to less negative outcomes are shown in 
the left column, and regions whose BOLD activity responded increasingly to 
more negative outcomes are shown in the right column. Regions shown in 
the positive contrast include the frontal eye fields, intraparietal sulcus, left 
visual area, and ventral striatum. Regions shown in the negative contrast 
included the left OFC, DMPFC, genual ACC, and posterior cingulate cortex.

negative EV
gamble

 indicated a better gamble, which demonstrates that 
these regions responded in a graded manner to comparatively better 
possible outcomes – even though all outcomes were still painful. 
Given that all outcomes were aversive, it is interesting that ven-
tral striatum activity increased for relatively “less bad” outcomes. 
Regions with negative EV

gamble
 correlations, or a greater response 

for worse outcomes (more expected shocks), included the posterior 
cingulate, anterior cingulate (ACC), inferior parietal lobule, insula, 
and the lateral OFC (lower portion of Table 1).

To determine how these regions responded to the individual 
components of the gambles (less or more potential shocks), beta 
values for the lottery × number of shocks less and lottery × number 
of shocks more condition were extracted from regions identified 
in the lottery × EV

gamble
 contrast mentioned above. The left ventral 

striatum showed significant positive and negative correlations 
with the number of potential shocks less (better) and number of 
potential shocks more (worse), respectively. Other areas identified 
in the positive EV

gamble
 contrast revealed the same relationship: 

a significant positive correlation with the number of potential 
shocks less and negative correlation with the number of potential 
shocks more. The opposite trend was seen for several regions 
identified in the negative EV

gamble
 contrast: significant positive 

correlations with the number of potential shocks more and nega-
tive correlations with the number of potential shocks less were 
observed in the insula, intraparietal sulcus, and dorsomedial 
prefrontal cortex (DMPFC). To visualize activity to each indi-
vidual gamble type, we extracted beta values from ROIs in the 
lottery × EV

gamble
 contrast for each gamble type. In the left ventral 

striatum, gambles with a higher EV
gamble

 were associated with less 
deactivation, and gambles with a lower EV

gamble
 were associated 

with more deactivation, as revealed in a heat map (see Figure 5). 
A heat map of beta values from the DMPFC for each gamble 
revealed less activation to gambles with a higher EV

gamble
, and 

more activation to gambles with a lower EV
gamble

 (see Figure 5). 
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would expect to see increased striatal activity to more potential 
shocks. Instead, we observed the opposite trend, precluding an 
analgesic explanation.

Although the aforementioned discussion pertains to the role of 
the striatum in relative valuation, we also find evidence for such 
signals in cortical regions classically associated with pain and pun-
ishment evaluation (Bechara et al., 1998; O’Doherty et al., 2001; 
Koyama et al., 2005; Kringelbach, 2005; Raij et al., 2005; Seymour 
et al., 2005). These regions appear to signal valuation in an inverse 
manner from the striatum, with both systems operating in syn-
chrony during the decision period. Indeed, evidence for the co-ex-
istence of both appetitive-valuation and aversive-valuation signals 
in the brain exists, with the aversive-valuation signals residing in 
some of the same regions that we observe, namely in the lateral 
OFC and genual ACC (O’Doherty et al., 2001; Small et al., 2001; 

Beyond the striatum’s adaptive coding of value, its more gen-
eral role in pain processing has been hotly debated (Leknes and 
Tracey, 2008). Some studies have shown ventral striatal activ-
ity during the anticipation of painful stimuli (Becerra et al., 
2001; Jensen et al., 2003), a finding echoed by PET evidence of 
dopamine release to pain (Scott et al., 2006), while others have 
argued this activity merely reflects the anticipated relief (Baliki 
et al., 2010). Still others have suggested that the ventral stria-
tum functions more generally in motivated behavior (Horvitz, 
2000; Zink et al., 2003, 2004; Delgado et al., 2004; Nicola et al., 
2004; Leknes and Tracey, 2008). Our results showed increased 
ventral striatal activity in anticipation of fewer shocks, which 
suggests that the striatum is not simply functioning to prime 
the system to avoid pain – i.e., an analgesic effect (Scott et al., 
2006, 2007; Wood and Holman, 2009). If that were the case, we 
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FIguRe 5 | Ventral striatum, DMPFC, and genual ACC activity during the 
lottery period. The ventral striatum showed less deactivation to better gambles 
(less negative EVgamble), as seen in the whole-brain EVgamble analysis at p < 0.05, 
FDR, with a cluster threshold of 10 voxels (A). A heat map of ventral striatum 
activity for each gamble type was generated by taking the ventral striatum ROI 
(14 voxels) from A and extracting BOLD estimates for each gamble type (B). 
Activity in the ventral striatum showed a significant positive correlation with the 
number of shocks less than the reference amount and significant negative 
correlation with the number of shocks more than the reference amount (C). The 

DMPFC and genual ACC showed increasing activity to worse gambles (more 
negative EVgamble), as seen by the whole-brain EVgamble analysis at p < 0.05, FDR, 
with a cluster threshold of 10 voxels (D,g). A heat map for activity in the DMPFC 
and genual ACC is shown in (e) and (H). Activity in the DMPFC and genual ACC 
showed a significant positive correlation with the number of shocks more than 
the reference amount (F,I), and a significant negative correlation with the 
number of shocks less than the reference amount (F). Beta values for the 
DMPFC and genual ACC were extracted from an 8-mm sphere ROI centered on 
the peak voxel for that cluster (marked with a red cross).
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